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Abstract

We propose a numerical method to calculate unsteady flows of Bingham fluids without any regularization of the

constitutive law. The strategy is based on the combination of the characteristic/Galerkin method to cope with con-

vection and of the Fortin–Glowinsky decomposition/coordination method to deal with the non-differentiable and non-

linear terms that derive from the constitutive law. For the spatial discretization, we use low order finite elements, with,

in particular, linear discretization for the velocity and the pressure, stabilized by a Brezzi–Pitk€aaranta perturbation term.
We illustrate this numerical strategy through two well-known problems, namely the hydrodynamic benchmark of the

lid-driven cavity and the natural convection benchmark of the differentially heated cavity. For both, we assess our

numerical scheme against previous publications, for Newtonian flow or in the creeping flow regime, and propose novel

results in the case of Bingham fluid non-creeping flows.
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1. Introduction

The linear Newtonian strain/stress relation appears to model the rheological behaviour of numerous

industrial or geophysical flows poorly; this is the case for instance, of solidifying flows to be dealt with in

nuclear safety studies, which is the context of the present work. Among the non-Newtonian fluids, the

viscoplastic ones exhibit a yield stress and thus combine the behavior of solids in the so-called ‘‘rigid’’

regions and of non-Newtonian liquids in the ‘‘flow’’ regions. The internal dissipation potential defined by

w ¼ r:D is classically shown for isothermal flows of incompressible fluids to depend only on the second
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principal invariant jDj of the shear strain rate tensor (r:D ¼
P

i;j rijDij and jDj2 ¼ kDk2R2�2 ¼
P

i;j DijDij).

For the Bingham model, it is given by

wðDÞ ¼ ljDj2 þ sY jDj; ð1Þ

The function w is not differentiable but is convex, lower-semicontinuous and positive. It is a pseudo-po-
tential and the constitutive law can be expressed as the generalized equation

s ¼ r þ pI 2 oDw: ð2Þ

Then by using the definition of sub-gradient oDw, we can turn relations (1) and (2) to system (3) where the
implicit splitting of the fluid domain into its ‘‘flow’’ and ‘‘rigid’’ parts explicitly appears as

if jsjP sY s ¼ sY
jDj þ 2l

� �
D;

if jsj6 sY D ¼ 0:

8<
: ð3Þ

This concludes out presentation of the governing set of equations. We will assume that the fluid is ho-

mogeneous and isotropic and that the fluid domain is an open and bounded subset of the physical space.

Fluid motion is governed by the Navier–Stokes set of equations, i.e., by the balance equation of mo-

mentum:

q
ou
ot

�
þ ðu:rÞu

�

r � r ¼ qg; ð4Þ

by continuity equation:

r � u ¼ 0; ð5Þ

by Dirichlet homogeneous boundary conditions on the Lipschitz domain boundary oX and by the con-

stitutive relations (1) and (2) or (3). For non-isothermal problems, this system must be complemented by an

energy balance equation.
From relations (4), (1), (2) and (5), we can exhibit the three main difficulties faced with when modelling

unsteady flows of Bingham fluids, namely the usual problems raised by the mathematical properties of the

differential operator of advection, the non-differentiability of the constitutive law and the incompressibility

condition.

The Galerkin method is known to be particularly efficient in solving elliptic or parabolic equations but to

underperform when applied with no regularizing strategy to convection-dominated flows. To address this

problem, we turned to a characteristic/Galerkin formulation. When applied to Newtonian flows, this

formulation is known to lead to stable and convergent numerical schemes under a condition that is weaker
than the CFL condition, see a.o. [13]. Moreover, it results in solving linear symmetrical algebraic problems

only.

Nomenclature

u velocity field D shear strain rate tensor

r Cauchy stress tensor l dynamic viscosity

p pressure q density

s shear stress tensor sY plasticity threshold

w internal dissipation potential g gravity field
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Shear stresses are not determined by the Bingham constitutive model when the shear strain rate

magnitude vanishes. Several authors have proposed approximating this model by replacing the non-

differential part of the internal dissipation potential by a functional that is differentiable at least once for

any shear strain rate. In the case of the Tanner�s [2] bi-viscous model, the law is modified only for small
magnitudes of the shear strain rate, as the solid regime is replaced by a very viscous regime (with a

‘‘plastic viscosity’’ as numerical parameter). Other authors have proposed modifications that hold for any

shear strain rate and lead to highly regular dissipation potential. Of these last models, Panastasiou�s [17]
exponential model is to our knowledge the most frequently quoted in the literature. Fortin and Glo-
winsky, see [10, Chapter III] and [12, Chapter VI], in contrast have proposed an application of their

decomposition/coordination method to deal with the unregularized constitutive law (1) and (2). This

strategy has been adopted by Fortin et al. [9] in case of steady flows and by Huilgol and Panizza [14] and

recently by Roquet and Saramito [18] in case of pipe flows. The difficulty due to the constitutive law is

isolated from others by introducing a new primal variable c that represents the shear strain rate tensor
(decomposition step) and a Lagrange multiplier k that enforces the constraint c ¼ DðuÞ, making sense to
this new primal variable (coordination step by a penalisation–dualisation technique). No continuity as-

sumption is required for these new variables which belong to W ¼ ½w such that wij 2 L2ðXÞ. Subse-
quently choosing the corresponding discrete fields as piecewise constant functions will turn the discrete

counterpart of the constitutive law (3) into a simple analytic relation on each finite element. Furthermore,

the interpretation of the Bingham variational inequality with Lagrange multipliers of Duvaut and Lions

[8] has been used recently by Dean and Glowinsky [7] to design another method to cope with the un-

regularized law (1) and (2).

The problem of analysing the regularity that can be expected for the solution of the Bingham problem is

still an open problem (see the recent contribution of Fuchs and Seregin [11]), but it seems unreasonable to

hope for more than something weaker thanH2ðXÞd , whatever the regularity of the right hand member may
be. One may note however that in specific cases such as Poiseuille flows in cylindrical pipes [12] or Couette

flows, the velocity is known to belong toHsðXÞ; s < 5=2. Due to this lack of regularity we have been led
naturally to use piecewise linear approximations of the velocity field. Moreover, this choice, together with

the choice of piecewise constant elements for the approximation of c, allows the constraint c ¼ DðuÞ to be
satisfied exactly. The two finite element spaces for the velocity field and the pressure field should fulfill the

discrete Babuska–Brezzi or inf–sup condition, which is known to be impossible if they are based on

polynomials of an order less than or equal to one. We have chosen piecewise linear polynomials on triangles

for approximating the velocity field and the pressure field (P1/P1 mixed finite elements) and to stabilize the
discrete set of equations by adding the Brezzi–Pitk€aaranta perturbation (see [4]). The numerical analysis of
the Brezzi–Pitk€aaranta stabilization in the case of Bingham fluids can be found in a forthcoming paper [15].
In the next section, we outline the main steps that lead to the fully discrete problem. Then in the last

section, we propose validating our numerical strategy using two benchmarks that have been widely used to

assess the potentialities of numerical schemes for Newtonian flows, namely the lid-driven cavity and the

thermally driven square cavity.

2. Numerical strategy

This section is devoted to the description of the proposed numerical strategy. We do not go into details

of any theoretical justification here.

The time interval 0; T  is divided into sub-intervals tn; tnþ1 assumed for the sake of readability to be of
equal length dt. We assume that all solutions up to time t ¼ tn are known, and we are searching for the
solution of (4), (3) and (5) at time tnþ1. For all 06 n6N ¼ T=dt, un will stand for the approximation of the
velocity at time tn, i.e., unðxÞ � uðx; tnÞ 8x 2 X.
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The characteristic/Galerkin method relies on decoupling between the advection and diffusion operators

of the momentum balance equation (4). The material (total) derivative of the velocity with respect to time

q
du
dt

ðx; tnþ1Þ ¼ q
ou
ot

ðx; tnþ1Þ
�

þ ðuðx; tnþ1Þ:rÞuðx; tnþ1Þ
�

¼ r � sðx; tnþ1Þ 
 rpðx; tnþ1Þ þ qgðxÞ

is approximated using the first-order Euler (backward) scheme by

du
dt

ðx; tnþ1Þ � unþ1ðxÞ 
 unðnnþ1
x ðtnÞÞ

dt
;

where 8x 2 X; nnþ1
x : ½tn; tnþ1 ! R2 denotes the characteristic curve that is solution of the final value

problem

dnnþ1
x ðtÞ
dt

¼ unðnnþ1
x ðtÞÞ 8t 2 ½tn; tnþ1;

nnþ1
x ðtnþ1Þ ¼ x:

8><
>:

In its turn this last curve is approximated by n� : ½tn; tnþ1 ! R2:

n�ðtÞ ¼ x
 ðtnþ1 
 tÞunðxÞ: ð6Þ

Finally, the semi-discrete scheme consists of two steps solved successively.
(1) Convective step: for all x 2 X, find

u�ðxÞ ¼ unðn�ðtnÞÞ:

(2) Diffusive step: find unþ1 2 U ¼ fv 2 Vjr � v ¼ 0g, such that

q
unþ1ðxÞ 
 u�ðxÞ

dt
¼ r � snþ1ðunþ1Þ 
 rpnþ1 þ qg;

where V ¼ X2 ¼ ½H1
0ðXÞ2. The rest of the section is devoted to the diffusive step. By introducing the

auxiliary variable c ¼ DðuÞ and by a suitable choice of vector f , this latter problem can be reformulated as
follows.

Problem 1. Find ðu; cÞ 2 fðv;wÞ 2 U�Wjr � v ¼ 0;w ¼ DðvÞg such that

GðuÞ þFðcÞ ¼ min
ðv;wÞ

½GðvÞ þFðwÞ;

where

GðvÞ ¼ q
2dt

Z
X
v � v dX 


Z
X
f � vdX and FðwÞ ¼

Z
X

wðwÞ dX:

The constraints r � u ¼ 0 and c ¼ DðuÞ are relaxed by introducing two Lagrange multipliers p and k
leading to the following saddle point problem.

Problem 2. Find ðu; c; p; kÞ 2 V�W� Q�W such that

Lrðu; c; p; kÞ ¼ inf
ðv;wÞ2V�W

sup
ðq;mÞ2Q�W

Lrðv;w; q; mÞ
 !

;

where Lr stands for the Lagrangian functional defined on V�W� Q�W by
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Lrðv;w; q; mÞ ¼ GðvÞ þFðwÞ 
 hm;w
 DðvÞiW 
 hr � v; qiQ þ
r1
2
kw
 DðvÞk2W þ r2

2
kr � vk2Q;

where Q ¼ L2
0ðXÞ stands for the set of admissible pressures and r1, r2 are two penalty parameters.

Next, we introduce the discrete counterparts of sets V, Q and W. We assume that a finite element

regular and quasi-uniform partition Th of �XX into polyhedrons (for a precise definition, see [5]) exists with
Th ¼

S
K2Th

ðKÞ. The discretization parameter h is defined by h ¼ supK2Th
ðhKÞ, where hK denotes the di-

ameter of the smallest circle including the polyhedron K. Each polyhedron K 2 Th is associated with three
Lagrange finite elements [5] ðK;uK ;R

u
KÞ, ðK; pK ;R

p
KÞ and ðK;wK ;R

w
KÞ that correspond to each component of

the velocity field, the pressure field and each component of the shear strain rate field, respectively. We set

Vh, Qh andWh for the discretized sets of admissible velocities, admissible pressures, and admissible shear

strain rates respectively, where

Vh ¼ ½Xh2 ¼ vi 2 C0ð�XXÞ such that vijK 2 uK 8K 2 Th

n oh i2
� V;

Qh ¼ q 2 L2ð�XXÞ such that qjK 2 pK 8K 2 Th

n o
� Q;

Wh ¼ wi;j 2 L2ð�XXÞ such that wi;jjK 2 wK 8K 2 Th

n oh i2�2
� W:

We can state a discrete analogue of problem 2.

Problem 3. Find ðuh; ch; ph; khÞ 2 Vh �Wh � Qh �Wh such that

Lhðuh; ch; ph; khÞ6Lhðvh; ch; ph; khÞ 8vh 2 Vh;

Lhðuh; ch; ph; khÞ6Lhðuh;wh; ph; khÞ 8wh 2 Wh;

Lhðuh; ch; ph; khÞPLhðuh; ch; qh; khÞ 8qh 2 Qh;

Lhðuh; ch; ph; khÞPLhðuh; ch; ph; mhÞ 8mh 2 Wh;

where Lh stands for the augmented Lagrangian functional defined on Vh �Wh � Qh �Wh by

Lhðvh;wh; qh; mhÞ ¼ GðvhÞ þFðwhÞ 
 hmh;wh 
 DðvhÞiW 
 hr � vh; qhiQ þ
r1
2
kwh 
 DðvhÞk2W

þ r2
2
kr � vhk2Q 
 a

2

X
K2Th

h2Kkrqhk2K :

The last term in the Lagrangian functional Lh is the Brezzi–Pitk€aaranta perturbation, necessary to cope
with the instability of the chosen pair of velocity and pressure approximation spaces. Rules for optimal

choices of the perturbation parameter a can be found for regular grids in [20]. Once this term is introduced,
the problem loses its standard saddle point structure.

Finally as already mentioned, sets uK and pK are assumed to be the sets of linear functions on K whereas
set wK is assumed to be the set of functions that remain constant over K. The algorithm we used to solve
Problem 3 is an extension of the fully decoupled algorithm ALG2 of [10,12] and thus also an extension of

the Uzawa algorithm. It reads:

Algorithm 1. ðul
1h ; cl
1h ; pl
1h ; kl
1
h Þ being known, find ðulh; clh; plh; k

l
hÞ solving the following four steps suc-

cessively, 8ðvh;wh; qh; mhÞ 2 Vh �Wh � Qh �Wh:
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• hG0ðulhÞ; vh 
 ulhiVh

 hpl
1h ;r � ðvh 
 ulhÞiQh

þ hkl
1
h ;rðvh 
 ulhÞiWh

þ r1hrulh 
 cl
1h ;rðvh 
 ulhÞiWh

þ r2hr � ulh;r � ðvh 
 ulhÞiQh
P 0:

• F1ðwhÞ 
F1ðclhÞ þ hF0
0ðclhÞ;wh 
 clhiWh


 hkl
1
h ;wh 
 clhiWh

þ r1hwh 
rulh;wh 
 clhiWh
P 0:

• hplh 
 pl
1h ; qhiQh
¼ 
q2 hr � ulh; qhiQh

"
þ a

X
K2Th

h2Khrplh;rqhiQh

#
:

• hkl
h 
 kl
1

h ; mhiWh
¼ 
q1hclh 
rulh; mhiWh

;

where F0 and F1 denote the differentiable and non-differentiable parts of the functional F, respectively.
The optimality condition associated to c (second step of the algorithm) takes the form of the following

series of minimization problems.

Problem 4. For all K 2 Th, find clK that minimizes the functional:

hðwhÞ ¼
Z
K

l
�h

þ r1
2

�
kwhk2 þ sY kwhk 
 ðkl
1

K þ r1DðulhÞÞ : wh

i
dX;

Each of those problems can be solved analytically. We define

flK ¼ kl
1
K þ r1R

K dX

Z
K
DðulhÞ dX

and, over each triangle, the shear strain rate is given explicitly by

if kflKk < sY clK ¼ 0;

if kflKkP sY clK ¼ 1

2 l þ r1
2

� � 1
 sY
kflKk

 !
flK :

8><
>:

This last aspect represents the main interest of the decomposition-coordination technique.

This method has been implemented in C++ as an application of PELICANS, an object oriented plat-

form developed by our team to provide general frameworks and software components for the implemen-

tation of PDEs solvers.

3. Numerical experiments

3.1. Flow in the lid-driven cavity

This section is devoted to our contribution to the lid-driven cavity benchmark. This benchmark has been

extensively used for Newtonian fluids to test CFD codes. A fluid fills up the unit square cavity

(06 ðx; yÞ6 1) whose upper boundary (y ¼ 1) moves with uniform horizontal velocity while the three other
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sides remain motionless. The fluid is assumed to stick to the cavity walls. Even if, strictly speaking, the

restriction of the velocity to the boundary is discontinuous, this difficulty is eliminated when dealing with

the piecewise linear discrete velocity and neither regularization nor specific numerical treatment is neces-

sary. We then impose strict Dirichlet conditions on the degrees of freedom associated to the velocity.

Obviously we are concerned here with the extension of this conventional benchmark to Bingham fluid

flows.

For this particular flow, the main quantitative results that can be given are the features of the flow

vortices (intensity, center location). To this end, we need to compute the stream function w on the whole
domain as a post-process, by solving the following PDE:

r2wðx; yÞ ¼ ouy
ox


 oux
oy

:

This equation admits a weak form posed on X that is replaced by its Galerkin approximation posed on Xh.
Each vortex is then characterized by a local extremum of this piecewise linear discrete stream function, its

intensity being equal to the absolute value of this local extremum.

All the following results have been obtained using the numerical strategy presented in section 2, with

zero yield stress in case of Newtonian fluid. We use uniform meshings made up of triangles and that

keep the symmetry properties of the square. In the next two subsections that are devoted to creeping

flows and to unsteady flows, respectively, we start by a comparison with standard results obtained for

Newtonian fluids, then we display the results we obtain for various values of the yield stress. In all the

calculations, the fluid viscosity has been set to 1 Pa s as the density is either zero (creeping flows) or
1000 kg=m

3
.

Validations on Newtonian fluid flows have been made by comparison with highly accurate results ob-

tained with the Chebyshev collocation method or from literature by Botella and Peyret [3].

3.1.1. Creeping flows

We first focus on creeping flows, which will allow us to compare our results with previously published

ones. In Table 1, we display the results obtained for a vanishing yield stress using finer and finer meshes.

With regard to the principal vortex, these results tally well with the reference results. The symmetrical

secondary vortices are not found with the coarsest mesh. A 80� 80 mesh is necessary to capture all the flow
features accurately (relative error on the intensity of 7� 10
2% for the principal vortex and 1% for the

secondary vortices). In Table 1, the abbreviation undisc. stands for a result that has not been disclosed. On

Fig. 1 we have plotted the spatial distribution of the streamlines and of the rigid zones (i.e. zones where the
shear strain rate vanishes) obtained for various values of the yield stress. One observes the growth of the

rigid zones already reported by other authors, see among others [1,16,19].

Table 1

Features of vortices in case of a Newtonian fluid

Reference Principal vortex Bottom left vortex

Intensity Position Intensity Position

Present work 20� 20 mesh 0.09978 ð0:5; 0:75Þ Absent

40� 40 mesh 0.09991 ð0:5; 0:775Þ 1:76� 10
6 ð0:025; 0:05Þ
80� 80 mesh 0.100054 ð0:5; 0:7625Þ 2:25� 10
6 ð0:0375; 0:0375Þ
160� 160 mesh 0.100072 ð0:5; 0:7625Þ 2:235� 10
6 ð0:0375; 0:0375Þ

Botella and Peyret [3] 0.10008 undisc. 2:223� 10
6 undisc.

Mitsoulis and Zisis [16] 0.0995 (0.5,0.7625) undisc.
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The secondary vortices that are observed for a Newtonian fluid remain present for low yield stress values.

They are then pushed up by the growth of rigid zones while their intensity decreases and finally they dis-

appear. The evolution of the principal vortex features is compared to the results of the computations

performed by Mitsoulis and Zisis [16] with a regularized constitutive law on Fig. 2. The step-shaped curve of

Fig. 2 corresponding to the present work is due to the piecewise linear approximation of the stream function.

The horizontal velocity evolution along the vertical centerline shown in Fig. 3 again highlights the
progressive growth of the rigid zones. As the value of the yield stress rises, the principal vortex center goes

up toward the upper cavity side, the zone dragged by the upper boundary becomes thinner and thinner,

presenting increasingly steep gradients, while the flow return zone becomes homogeneous and remains

broad. For highest values of the yield stress, the problem approaches the extreme situation of an incom-

pressible solid square blocked along three of its edges and driven along the last one, and no flow can be

observed except for the upper layers of elements. In this very specific case, adaptative remeshing techniques

should have certainly been adopted.

3.1.2. Flow for Re ¼ 103

We are interested now in the steady solution for a Reynolds number of 103, which we obtain by transient

computation pursued up to the time step when the following criterion is fulfilled:

junþ1h 
 unhj1
dtjunþ1h j1

< 10
6:

Fig. 1. Streamlines and rigid zones, Re ¼ 0.
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We start this section anew by validating our numerical method against results in literature for New-

tonian fluid flows. In Table 2, we present the features of the three vortices, i.e., the principal and the two

secondary vortices located at the right and left bottom corners of the cavity, respectively. Once again results

concur with the results in literature. Then in Fig. 4 we plot the maps of the streamlines and the rigid zones

for various yield stress values. Compared to Stokes flow, the disappearance of the secondary vortices and

the appearance of rigid zones when raising the yield stress is deferred. At high yield stress values, the inertial

effects are softened and once again a solution similar to that of Stokes problem is found.

The evolution of the principal vortex features as a function of the yield stress is drawn in Fig. 5.
Fig. 6 shows the evolution of the horizontal and vertical velocities along the vertical and horizon-

Fig. 3. Section of the horizontal velocity, Re ¼ 0.

Fig. 2. Principal vortex intensity and ordinate, Re ¼ 0.
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tal centerline, respectively, while the position and value of the extrema of these curves are given in

Table 3.

3.2. Thermally driven cavity

This numerical experiment consists of an extension of the benchmark proposed by De Vahl Davis [6] to

fluids with yield stress. Briefly, the fluid is assumed to fill the unit square cavity completely and to stick to its

Fig. 4. Streamlines and rigid zones, Re ¼ 103.

Table 2

Features of vortices in case of a Newtonian fluid

Reference Principal Bottom right Bottom left

Present work 0.1162 1:70� 10
3 2:1� 10
4
80� 80 mesh ð0:525; 0:5625Þ ð0:8625; 0:1125Þ ð0:0875; 0:075Þ

Botella and Peyret [3] 0.1189 1:73� 10
3 2:3� 10
4
ð0:531; 0:5652Þ ð0:864; 0:118Þ (0.0833,0.0781)

Other references of Botella and Peyret [3] ½0:113; 0:119 ½1:6� 10
3; 1:9� 10
3 ½2:1� 10
4; 3:2� 10
4
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four walls. The vertical walls are differentially heated whereas the horizontal ones are assumed to be

adiabatic. As already mentioned in section 1, if flows are no longer assumed to be isothermal, coupling with

the temperature remains weak as the rheologic properties of the fluid are assumed not to depend on

temperature changes. We apply the Boussinesq hypothesis, i.e., all variations of density are neglected except

for the gravitational terms where the density is assumed to have linear dependence on temperature changes.

The fluid motion is governed by the Boussinesq system of equations, i.e., by the momentum balance
equation

Fig. 5. Principal vortex intensity and position, Re ¼ 103.

Fig. 6. Sections of velocity along the vertical mid-plane, Re ¼ 103.
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q
ou
ot

�
þ ðu:rÞu

�

r � r ¼ qð1
 bðT 
 TrefÞÞg;

where b, T and Tref denote the thermal expansion coefficient, temperature field and a reference temperature,
respectively, by the energy balance equation

oT
ot

þ ðu � rÞT ¼ kDT ; ð7Þ

where k denotes the thermal diffusivity, by continuity Eq. (5), by the constitutive relations (1) and (2) and by
Dirichlet homogeneous boundary conditions on the Lipschitz domain boundary oX. The splitting scheme
of section 2 is modified to include the energy balance equation (7):

(1) Convective step: for all x 2 X, find

u�ðxÞ ¼ unðn�ðtnÞÞ; T �ðxÞ ¼ T nðn�ðtnÞÞ;

where n�ðtnÞ is defined by (6).
(2) Diffusive step: find T nþ1 2 X and unþ1 2 U ¼ fv 2 Vjr � v ¼ 0g, such that

T nþ1ðxÞ 
 T �ðxÞ
dt

¼ kDT nþ1ðxÞ;

unþ1ðxÞ 
 u�ðxÞ
dt

¼ r � snþ1ðunþ1Þ 
 rpnþ1 þ qg:

Modification of the convection step due to processing the energy balance is straightforward as the

characteristic curves have already been computed for the velocity advection step. The temperature diffusion

step leads to the resolution of a second order elliptic PDE.
We detail here computations performed at a rather low Rayleigh number value, Ra ¼ 104, for which

complete fluid blocking is obtained for reasonable yield stress values. Then we give some of the results

obtained at higher Rayleigh numbers.

The computations have been performed with the following physical parameters values: q ¼ 1 kg=m3
,

viscosity of 1 Pa s, k ¼ 1 m2=s, g ¼ 10 m2=s, and b=Ra ¼ 7:1� 10
2 K
1.

Table 3

Velocity extrema along centerlines x ¼ 0:5 and y ¼ 0:5
References Extrema of velocities along centerlines

Along x ¼ 0:5 Along y ¼ 0:5

ymin miny Vx xmin minx Vy xmax maxx Vy

Botella and Peyret [3] 0.1717 )0.3886 0.9092 )0.5271 0.1578 )0.3769
Other references of Botella

and Peyret [3]

½0:16; 0:18 ½
0:39;
0:37 ½0:90; 0:91 ½0:49; 0:53 ½0:15; 0:16 ½
0:38;
0:34

sY ¼ 0 Pa 0.175 )0.3813 0.9125 )0.5181 0.1625 0.3723

sY ¼ 0:1 Pa 0.175 )0.3796 0.9125 )0.5144 0.1625 0.364

sY ¼ 1 Pa 0.175 )0.3438 0.9 )0.482 0.1625 0.3286

sY ¼ 5 Pa 0.2625 )0.2149 0.8875 )0.3373 0.225 0.1786

sY ¼ 10 Pa 0.5 )0.1156 0.825 )0.1258 0.3375 0.0572

sY ¼ 100 Pa 0.6 )0.0762 0.6125 )0.0002 0.4625 0.00017

sY ¼ 1000 Pa 0.6375 )0.0288 0.925 )0.00015 0.075 0.00016
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Table 4

Comparison with the benchmark solution of [6], Newtonian fluid

Meshing 20� 20 Meshing 40� 40 Meshing 60� 60 Benchmark [6]

Nu0 2.205 2.235 2.240 2.238

Numax ðzÞ 3.384 (0.15) 3.482 (0.15) 3.497 (0.15) 3.528 (0.143)

Numin ðzÞ 0.640 (1.) 0.611 (1.) 0.601 (1.) 0.586 (1.)

jwmaxj 4.938 4.999 5.032 5.071

V maxx ðzÞ 15.779 (0.85) 16.028 (0.825) 16.091 (0.833) 16.178 (0.823)

V maxz ðxÞ 19.111 (0.1) 19.38 (0.875) 19.423 (0.117) 19.617 (0.119)

Fig. 7. Temperature field, left column and streamlines and rigid zones, right column, Ra ¼ 104.
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We start once again by validating our numerical strategy in the case of Newtonian fluid flows, by

comparing our results with the benchmark results of [6]). In Table 4, we have collected the characteristic

flow quantity values proposed by De Vahl Davis: Nu0, Numax and Numin are the average, maximal and
minimal Nusselt numbers at the left cavity wall, jwmaxj is the vortex intensity, V maxx (m/s) is the maximum

horizontal component of the velocity at the vertical mid-plane and V maxz (m/s) is the maximum vertical

component of the velocity at the horizontal mid-plane.

We turn next to flows obtained for non-zero values of the plasticity threshold. In Fig. 7 we display

spatial distributions of the temperature field, streamlines and rigid zones obtained for various yield stress

Fig. 8. Temperature and velocity sections for various plasticity thresholds (Pa).

Fig. 9. Nusselt number at hot wall and vortex intensity.
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values. When the yield stress increases, secondary vortices appear at two corners of the cavity, then some

rigid zones are observed while tertiary vortices appear at the last two corners. The temperature field turns

out to be independent on the ordinate. For a yield stress of 300 Pa, the principal vortex intensity is one

hundred times lower than for the Newtonian flow. Then for a yield stress value close to 500 Pa, the fluid is
completely blocked and we obtain the analytical linear solution for the temperature field.

This behaviour is more accurately quantified by the temperature and vertical velocity component curves

along the horizontal mid-plane shown in Fig. 8. The evolution of the average Nusselt number at the hot

wall and of the vortex intensity as a function of the yield stress are presented in Fig. 9.

In Table 5 we finally present the results we obtained for a yield stress value of 300 Pa and for various

Rayleigh number values.

4. Conclusion

In this paper, we have presented a numerical method for dealing with Bingham fluid flows which appears

to be robust, thus in particular able to cope with convection-dominated problems, and cost-effective, by the

use of low order finite elements. Moreover, this latter choice is well suited to the problem in hand because of

the poor regularity which can be expected for the solution. In addition, this numerical scheme takes benefit

of the use the Fortin–Glowinski decomposition-coordination method to offer wide flexibility in the choice

of the rheological constitutive relations; for example, changing from the Bingham law to a more sophis-
ticated one, as the Herschel–Bulkley law, would result in rather straightforward development. The nu-

merical analysis of this scheme, restricted to the Stokes problem, is the topic of a forthcoming paper [15].
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